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1 Executive Summary

1.1 Project Overview

The overall objective of this project was the development of methods for efficiently
finding solutions to problems that consist of sets of expressive constraints, including
both overconstrained and underconstrained situations. In either case, constraint man-
agement is necessary: in an overconstrained situation, it is necessary to determine how
best to relax existing constraints so that a solution can be computed, while in an under-
constrained situation, it is necessary to select good (or, if time permits, optimal) solu-
tions from amongst the alternatives. We developed novel and highly efficient solutions
using two classes of techniques: fully automatic techniques that manage constraint sets
given explicit preference functions, and mixed initiative techniques that allow interac-
tive control by a human user to manage constraint sets. The solutions we developed
are broadly applicable to challenges that arise in the domains of cybersecurity and cy-
berdefense. However, because of the lack of accessible test cases in these domains,
we validated our techniques using both systematic but abstract datasets, and large real
constraint problems taken from another domain: floorplan legalization in circuit de-
sign. An added advantage of working in this domain was the demonstration that our
methods, which were developed in the context of temporal reasoning, also apply to
problems of spatial reasoning.

1.2 Key Results

Amongst the key results of this project are the following:
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Development of two approaches to finding solutions to overconstrained Dis-
junctive Temporal Problems (DTPs) that maximize the number of satisfied con-
straints. The first uses the meta-level transformation of standard (hard-constraint
only) DTP solvers, to achieve a 3 order-of-magnitude efficiency gain relative
to a baseline technique [15], and a second approach that uses local search and
produces an additional order-of-magnitude speed-up [8].

" Development of a method for extracting minimum conflict sets from overcon-
strained DTPs, which can be used to support mixed-initiative resolutions by pro-
viding a user with an indication of the source of conflicts [9].

" Development of techniques for finding optimal solutions to DTPs, where the
optimality criterion is maximin (maximize the minimal value assigned to any
constraint [17]. Our algorithm adds only polynomial time complexity relative
to the cost of solving the reduced problem in which all the soft constraints are
treated as if they were hard.

" Development of techniques for finding optimal solutions to STPs, where the op-
timality criterion is utilitarian (maximize the sum of the values assigned to each
constraint [14], and for finding optimal solutions to DTPs, with the same opti-
mality criterion [7,3]. The STP results were the initial results on this problem,
and thus establish baseline conditions; the DTP results provide a 3 order-of-
magnitude speed-up relative to the state-of-the-art.

" Identification of a new type of uncertainty that was previously inexpressible in
the STP and DTP formalisms, and generalization of the formalisms to handle
this [1,2].

" Validation of the effectiveness of the techniques developed on "real" problems
from the circuit-layout domain (results in the earlier work were based on syn-
thetic data sets) [4,5].

2 Background

Note: Throughout the following sections, we provide a brief discussion of the major
results of the project. References are limited to our own publications. More detailed
discussion, including complete bibliographic citations, can be found in our publica-
tions.

The starting point for the work done in this project is the Disjunctive Temporal
Problem (DTP), which are a generalization of the Simple Temporal Problem (STP).An
STP is a pair (X, C), where the elements Xi E X designate time-points, and C is a set
of binary temporal constraints of the following form:

Xj - Xi E [aij, bj].

A solution to an STP is an assignment of values to time-points that satisfies all
constraints. An STP is said to be consistent if at least one solution exists. Consistency-
checking in an STP can be cast as an all-pairs shortest path problem in the correspond-
ing network: the STP is consistent iff there are no negative cycles in the all-pairs graph.
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This check can be performed in O(1X13 ) time. A by-product of this check is the min-
imal network, which is the tightest representation of the STP that still contains all
solutions present in the original network. A single solution can be extracted from the
minimal network in O(IX12) time.

A Disjunctive Temporal Problem (DTP) is a pair (X, C), where each element of C
is a disjunction of STP constraints as in the following:

(Xii - Xil E [aiiji, biljl]) V (Xi2 - Xi 2 G [ai2i 2 , bi2 j2])v

... V (Xjn - Xin E [aijn binjn]).

To satisfy a DTP constraint, only one of its disjuncts needs to be satisfied. An
assignment that satisfies at least one disjunct in each constraint is a solution to a DTP.

A key construct used for solving a DTP is a component STP, which is created by
selecting one disjunct from every DTP constraint. A given DTP has a solution if and
only if one of its component STPs does. Therefore, the search for a solution to a DTP
can be carried out by searching for a solution in each of its component STPs.

Finding a solution to an STP requires only polynomial time, but a DTP can have an
exponential number of component STPs. Fortunately, backtracking search and pruning
techniques make this approach practical in many cases: the component STP is built up
one disjunct at a time, backtracking if the current set of disjuncts are inconsistent.

The search through a DTP's component STPs is often cast as a search through a
meta-CSP derived from the DTP. Each variable in the meta-CSP corresponds a dis-
junctive constraint in the DTP; each disjunct in the disjunctive constraint is represented
by a single value in the meta-CSP variable. Assigning a meta-CSP variable to a partic-
ular value is therefore equivalent to choosing a particular disjunct from a constraint to
include in a component STP. Consequently, a set of assigned variables in the meta-CSP
defines an STP composed of all disjuncts implied by the assignments.

3 Overconstrained DTPs
To deal with the problem of DTPs that are not consistent, i.e., allow no assignments
that satisfy all the constraints, we explored two approaches. In the first, we built on
partial constraint satisfaction (PCS) techniques, which find partial solutions to a givcn
CSP by seleting a subset of constraints to relax. Often, this is done with the objective
being to minimize the total number of weakened constraints, and we adopted this goal
in our work as well. Where previous work had applied partial constraint satisfaction
techniques to finite-domain CSPs, we showed how to adoptthe problem to the meta-
CSP model of DTP solving, in which the constraints of the original problem become
the variables of a meta-level problem.

Our algorithm, which was called Maxilitis, derives from the simple branch and
bound algorithm given in Figure 1. On top of this framework, we add each of the
additional meta-level pruning techniques that we had exploited in our earlier work on
the Epilitis DTP solver, with the exception of no-good recording, whose general ap-
plicability to partial constraint satisfaction is a focus of future work. More specifically,
we demonstrated how to incorporate both general pruning techniques such as forward
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Partially-Solve-DTP(A, U, distance, upperbound)
1. If (distance > upperbound) return
2. If(U= /)
3. best-solution-so-far - A
4. upperbound -- distance
5. return
6. Endlf
7. C - select-variable(U), U' - U- {C}
8. For each value c of d(C)
9. A' -A U{C-c}
10. If consistent(A')
II. Partially-Solve-DTP(A', U', distance, upperbound)
12. Endlf
13. EndFor
14. A'- AU {C --C}
15. Partially-Solve-DTP(A', U', distance + 1, upperbound)

Figure 1: A simple partial constraint satisfaction algorithm for DTPs

checking and conflict-directed backjumping as well as techniques specific to temporal
CSPs, such as removal of subsumed variables and semantic branching.

Experimental results, given in [15] demonstrated that the computation time re-
quired to partially solve DTP problems is dramatically reduced by applying the prun-
ing techniques of removal of subsumed variables and semantic branching. They also
demonstrated that by executing our solver multiple times with incrementally increasing
upper bounds on the solution distance, the performance can be improved even more,
at the cost of giving up the algorithm's anytime quality. Unfortunately, despite these
speedups, exact partial constraint satisfaction appears to become intractable when the
number of constraints or variables in the problem becomes substantially large.

In response to this latter issue, we developed an alternative technique, which is
based on local search. The technique differs markedly from previous work on DTPs,
as it operates within the total assignment space of the underlying CSP rather than the
partial assignment space of the related meta-CSP. While search in the partial assign-
ment space of the meta-CSP is common to most systematic methods for solving DTPs,
it is less attractive with local search for several reasons. First, systematic methods
work within a backtracking tree, where disjuncts are removed in the order in which
they were added.m One technique that is commonly used in DTP solving, incremen-
tal full-path consistency, exploits this property by maintaining a stack of the variable
assignments made during the search, and using it to cheaply update path dependencies
during backtracking. Local search requires the ability to modify arbitrary values in the
partial assignment, not necessarily respecting the order in which they were originally
assigned; thus it cannot exploit the incremental approach. Second, several of the pow-
erful pruning techniques used by DTP solvers have no meaning outside the context of
a systematic search tree. For example, semantic branching is able to acquire additional
network constraints by exhaustively exploring particular assignments of disjuncts to
constraints. In local search, no such exhaustive search is performed, and consequently
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it is hard to imagine how to adapt this mechanism. Finally, in local search, the num-
ber of neighbors for partial assignment will typically be much larger than the number
of successor in systematic search, thus making evaluation of alternatives prohibitively
expensive.

The alternative approach is to perform search is the space of total assignments to the
time points in the original CSP. However, some key issues arise, which we addressed in
our work. One of the most important is the question of how to define the neighbors of
an assignmcnt,without creating an infinite search space. The key to reducing the size
of the search space is to note that if we hold fixed the values of all the variables but
one in a given problem, then only a small set of new values for the selected variable
are significant. Specifically, we only need to consider those values for which the slack
of some disjunct of some constraint becomes zero-in other words, those values which
cause an inequality to become a strict equality. This is somewhat similar to a pivot
step in the simplex method for linear programming, which maintains a basic feasible
solution that corresponds to an "active system" of constraints in the LP.

Using this key insight, as well as an approach to neighbor selection and tabu moves,
we developed the Localitis algorithm, shown in Figure 2. Experimental results, pre-
sented in [8], demonstrated that the local-search approach requires computation time
that is significantly reduced in comparison to traditional branch-and-bound algorithms
for performing partial constraint satisfaction.

4 Minimum Conflict Sets

An alternative approach to solving overconstrained sets of constraints is to involve a
user in a mixed-initiative process. Towards this end, it is important to able to identify
minimal sets of constraints that are unsatisfiable, so that the user can determine what
sorts of relaxations are appropriate. We thus developed a technique for efficiently iden-
tifying sets of conflicting constraints in an overconstrained problem. Our approach is
particularly well-suited to temporal problems, in which conflicts among constraints can
be resolved by weakening, rather than completely abandoning, constraints.

We built on our previous work on identifying Minimally Unsatisfiable Subsets of
constraints (MUSes). Given a set of constraints C, an MUS of C is a subset of C that
is (1) unsatisfiable and (2) minimal, in the sense that removing any one of its elements
makes the rest of the MUS satisfiable. Each MUS thus provides information about
a conflict that must be addressed to solve the given CSP. In general, an arbitrary CSP
may contain multiple MUSes, and all of them must be resolved by constraint relaxation
before the CSP can be solved. Identifying the MUSes of a CSP makes it possible to
reason about how to weaken conflicting constraints to make a solution feasible.

Our techniques for extracting MUSes are derived from a deep relationship between
maximal satisfiability and minimal unsatisfiability. The Maximal Constraint Satisfac-
tion problem (Max-CSP) is an optimization problem on a constraint system C that has
the goal of finding an assignment to the variables of C that satisfies as many constraints
as possible.

While Max-CSP is defined in terms of the cardinality of a satisfiable subset of
constraints, the definition can be relaxed to have inaugmentability as the goal instead.
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Localitis(DTP D)
1. Best-Assign - Assign - Maxilitis-First-Path(D)
2. For it = 1 to max-steps
3. min-cost - oo, moves - 0
4. For each disjunct d: x - y < b
5. If x not tabu
6. move - (x - y + b)
7. If Sat(Assign) 54 Sat(Assign/move)
8. If cost(Assignlmove < min-cost)
9. moves - 0
10. min-cost - cost(Assign/move)
11. Endlf
12. If cost(Assign/move = min-cost)
13. moves *- moves U {move}
14. Endlf
15. Endlf
16. Endlf
17. Repeat lines 5 - 16 for y (i.e., y - x - b)
18. EndFor
19. new-move - Random-Member(moves)
20. Assign - Assign/new-move
21. If cost(Assign) < cost(Best-Assign)
22. Best-Assign - Assign

23. Endlf
24. Update tabu count for the time point in new-move
25. EndFor
26. return Best-Assign

Figure 2: Localitis, a local search algorithm for DTPs

Thus, while we can define Max-CSP(C) as {m C C : mI is maximal, m is satisfiable},

we can define a new problem, Maximally Satisfiable Subset (MSS). The definition of
the set of MSSes follows, with the set of MUSes defined similarly for comparison:

MSSes(C) = rn C C : m is satisfiable, and
Vc G (C\m), m U {c} is unsatisfiable

MUSes(C) = m C C : m is unsatisfiable, and
Vc G m, Tn\{c} is satisfiable

In general, given any MSS, the set of constraints not included in that MSS pro-
vides an irreducible "fix" for the original infeasible system; removing these constraints

makes it satisfiable. Therefore, we define a "CoMSS" as the complement of an MSS,
and the set CoMSSes(C) as:

CoMSSes(C) = {m C C: (C\m) E MSSes(C)}

Our algorithm depends on these interelationships. In brief, we use a serial decom-

position of the task. First we find all of the CoMSSes of a DTP using an algorithm
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that borrows heavily from Maxilitis, discussed above; this algorithm could be readily
generalized for other types of constraints. Second, we use techniques for extracting
MUSes that operate completely independently of how the CoMSSes were generated
and the types of constraints involved. The two phases combine to form a solver, which
we name Musilitis, that is capable of diagnosing the infeasibility of any given DTP.
The solver is both sound, in that the sets of constraints it returns are all MUSes, and
complete, in that it will find all MUSes of the given constraint system.

We benchmarked both phases of the MUS generation process (finding CoMSScs(C)
and extracting MUSes(C) from it) using DTPs created by a random DTP generator
used in testing previous DTP solvers. We collected performance data and analyzed
the sets of CoMSSes and MUSes for DTPs over a range of DTP generator parameters.
Experimental results, given in [9], show excellent anytime properties. In one typical
highly-constrained instance, our algorithm generated more than 70,000 MUSes in the
first minute, and the rate then gradually slowed. This property could be exploited in
a system that interleaves MUS identification with constraint relaxation. Generally, if
the constraint system is highly overconstrained, resolving one MUS is likely to re-
solve many others, since the same constraints are likely to appear in a large number of
MUSes.

5 Underconstrained Problems
A large focus of the project has been on the development of techniques for solving
temporal constraint problems with soft constraints (or preferences). In this case, one
needs to consider the criterion that will be used for determining the quality of solution.
We explored two different optimality criteria, both of which have received attention in
the prior literature: maximin optimality and utilitarian optimality. The former equates
the value of an overall solution with the minimum value assigned to any individual
constraint, and attempts to maximize that value. The latter equates the value of an
overall solution with the sum of the values assigned to individual constraints, and agin
tries to maximize the overall value.

While there had been prior work on finding maximin optimal solutions to Sim-
ple Temporal Problems (STPs) (where the criterion was called "Weakest Link Opti-
mality"), we addressed the question of how to do this for DTPs. Our algorithm bor-
rows concepts from previous algorithms for solving STPs with Preferences (STPPs)
and TCSPs, in both cases using techniques for projecting and solving component sub-
problems. We demonstrate that the added expressivity provided by preferences is com-
putationally inexpensive. Specifically, we show that our algorithm not only falls into
the same complexity class as the corresponding hard-constraint algorithms, but that the
added cost of handling such preferences is worst case polynomial in the number of time
points in the network.

More specifically, the algorithm has two phases. In the first, the preference values
in the DTPP are discretized and a set of DTPs is projected from the DTPP-one DTP
for each preference value. This is done in a manner similar to that of the STPP algo-
rithm. In the second phase, an attempt is made to solve each DTP by searching for a
consistent component STP. The goal is to find the DTP with highest preference value
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that is consistent.
Significant efficiency gains are obtained by exploiting the Upward Inconsistency

Property: If a component STP of DTPq is inconsistent, then any related component
STP of DTPp for p > q will also be inconsistent.

This property holds because the higher-level STP constraints are tighter than the
lower-level STP constraints belonging to the same family. If no solution exists in an
STP, no tighter version of that STP will contain a solution. The upward inconsistency
property allows us to prune away a large part of the search space each time an inconsis-
tent STP is found. For example, if the algorithm finds an inconsistent STP at preference
level 1, then it can prune away all related higher-level STPs.

A complexity analysis in [171 demonstrates that our approach does not add signifi-
cant complexity relative to the cost of solving a DTP that contains only hard constraints.

In follow-on work, we explored the alternative notion of utilitarian optimality. In
[14] presents a novel algorithm for finding utilitarian optimal solutions to Simple Tem-
poral Problems with Preferences (STPPs) called the Greedy Anytime Partition algo-
rithm for STPPs (GAPS). GAPS is an iterative algorithm that does not restrict prefer-
ence functions and exhibits appealing properties that make it suitable for planning and
scheduling:

Anytime Finds solutions that average over 80% of optimal after a single iteration, and
up to 99% of optimal after m 2 iterations, where rn is the number of constraints.
Also performs comparably to a previous algorithm for STPPs that handles only
convex preference functions.

Complete Finds optimal solution in time that compares favorably to a branch-and-
bound algorithm.

Memory-boundable Allows caller to define trade-off between space and anytime per-
formance.

GAPS borrows the idea of projecting preference functions onto hard STP con-
straints, allowing standard, polynomial-time algorithms for solving STPs to be lever-
aged. Rather than operating directly on soft constraints, i.e., constraints with a pref-
erence function, our algorithm first converts them into preference projections, which
represent each soft constraint using a set of hard STP constraints, i.e., those without
preference functions.

GAPS relies on another algorithm, STPP-Greedy, a simple algorithm for quickly
finding a single high-quality solution to an STPP. The algorithm searches the space of
component STPs, starting with the lowest-valued, ROOT, and repeatedly improving
its value by replacing a single constraint with one of its children. The main function,
replaceAConst raint, picks a constraint, replaces it with one of its children, and
returns the child's identifier or a failure flag if no replacement is possible. If the replace-
ment by a child leads to an inconsistent component STP, a greedy decision is made: the
constraint is restored, marked as "finished" and never again chosen. STPP-Greedy is
illustrated in Figure 3.

GAPS then starts by running STPP-Greedy to find a greedy solution G (i.e. a
component STP). Then, GAPS uses G to partition the entire STPP search space into
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n+1 smaller subproblems, n of which will be placed in a priority queue to be recursively
solved later with GAPS, and one of which will be pruned. After this first iteration,
GAPS repeats these steps on a subproblem removed from the queue, keeping track of
the best solution found by each call to STPP-Greedy. When the queue empties, the
best solution will be the optimal solution. The interesting element of GAPS is how it
partitions the STPP search space using the component STP G; detals of how to do this
efficiently are provided in [14].

As noted above, we demonstrated that GAPS is complete and memory-bounded
and we provided experimental results showing that (1) a single iteration produces high-
quality solutions, (2) multiple iterations, bounded by the square of the number of con-
straints, produce near-optimal solutions.

Subsequently to our development of algorithms for finding utilitarian optimal so-
lutions to STPs, we moved on to doing the same thing for DTPs. Our first effort [7],
embedded the approach within a Mixed Logigal Integer Linear Programming (MLLP)
framework involving two types of constraints: logical constraints over Boolean vari-
ables, and Unit- Two-Variable-Per-inequality (UTVPI) integer constraints, while the
second [3] departed from the SAT encoding and instead introduced a new formalism,
the Valued DTP (VDTP). In contrast to the traditional semiring-based formalism that
annotates legal tuples of a constraint with preferences, the VDTP assigns elementary
costs to the constraints themselves. While this reformulation provides no increase in
expressive power, it drastically simplifies the computational difficulties related to tem-
poral optimization, since (unlike algorithms for solving finite-domain CSPs) search
strategies for disjunctive temporal reasoning rarely invoke object-level assignments di-
rectly.

We proved that the VDTP can express the same set of utilitarian optimal solutions
as the DTPP with piecewise-constant preference functions, and we develoedp a method
for achieving weighted constraint satisfaction within a meta-CSP search space that has
traditionally been used to solve DTPs without preferences. This allows us to directly
incorporate techniques developed in previous decision-based DTP literature in order to
make preferential optimization particularly efficient. Our algorithm is shown in Figure
4. The input variable A is the current set of assignments to meta-variables, and is

STPP-Greedy(ROOT)
I. IF ROOT is inconsistent, RETURN 0
2. cSTP -- ROOT
3. DO
4. (k, I, i) -- replaceAConstraint(cSTP)
5. IF k# -I AND cSTP is inconsistent
6. markAsFinished( C(k,l,i))
7. cSTP[k] -- parentOf( C(k,t,i))
8. END IF
9. WHILE k 6 -1
RETURN cSTP

Figure 3: The STPP-Greedy algorithm.
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Solve-VDTP(A, U, cost, upperbound)
If (cost > upperbound) return
If (U = 0)

best-solution-so-far -- A
upperbound -- cost
return

Endlf
Ci -- select-variable(U), U' - U - {C}
For each disjunct ci of D(Ci)

A' -- Au {Ci ' cij}
If (consistent(A'))

Solve-VDTP(A', U', cost, upperbound)
Endlf

EndFor
A' - AU {C, '}

Solve-VDTP(A', U', cost + wi, upperbound)

Figure 4: A branch-and-bound algorithm for solving VDTPs

initially 0; variable U is the set of unassigned meta-variables (initially the entire set C);
cost is the total weighted sum of violated constraints (initially zero); and upperbound
is the stored cost of the best solution found so far (initially set to c0).

This algorithm, which takes an approach similar to that our Maxilitis algorithm dis-
cussed above, resembles the meta-CSP backtracking search commonly used for solving
traditional DTPs with two notable differences. First, backtracking occurs only when
the combined weight of the violated constraints (cost) equals or exceeds that of the cur-
rent best solution (upperbound); in a standard DTP solver, backtracking would occur
whenever cost became nonzero (i.e., when any constraint had been violated). Second,
in addition to the values in the original domains of the meta-variables, there is the pos-
sibility of an empty assignment (Y) that serves to explicitly violate a constraint, and
so the branching factor increases by exactly one. We refer to this decision branch as an
(-relaxation, as it performs an explicit relaxation of a weighted constraint. This latter
modification, in combination with the meta-CSP search space employed in temporal
reasoning, sets our algorithm apart from previous applications of weighted constraint
satisfaction to classical CSPs.

Our experimental results, given in [3], show that the VDTP-based approach out-
performs the previous approaches to finding utilitarian optimal solutions to DTPPs by
several orders of magnitude.

6 Increased Expressive Power
A final research thrust for our project involved the identification of an important rep-
resentational limitation of the temporal-constraint satisfaction formalisms and the de-
velopment of new models that resolve this limitation. Specifically, prior work that had
introduced temporal uncertainty into the formalism had all assumed that temporal un-
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certainty is resolved in a specific way: the execution agent discovers the duration of a
contingent link only at the exact moment of its conclusion (or equivalently, it discovers
the time of a uncontrollable time point only at the time of its occurrence). This is not
an accurate reflection of how such knowledge is obtained in many practical situations:
one often learns the time of an initially uncertain event before its actual execution, and
can use that knowledge to make informed decisions about the remainder of the plan.
In addition, one may acquire only partial information about the time of an upcoming
event. Finally, and perhaps surprisingly, certain varieties of uncertainty may exist even
for problems that should be modeled entirely with controllable time points, something
that again cannot be captured by previous formalisms.

We therefore generalized the problem of controllability in constraint-based tempo-
ral reasoning [2], developing three extensions to this formalism. The first introduces
the notion of prior observability, in which the values of uncontrollable events become
known prior to their actual occurrence. The second captures situations in which an ob-
servation event triggers the reduction of a contingent temporal interval, a form of partial
observability that has not yet been captured in previous work. The third and final ex-
tension generalizes this notion to the requirement links, making it possible to express
certain additional types of uncertainty. A further extension [1] added the capability of
dealing with partial observability.

7 Experimental Validation

Although the work on this project was initially motivated by problems in cybersecurity
and cyberdefense, it was difficult to obtain appropriate test sets on which to validate
the algorithms. However, we were able to perform experimental validation using large-
scale test sets from an alternative real-world domains.

In our first work on this topic [5], we tackled a stylized layout problem, rectangle
packing. The problem of rectangle packing is one that has drawn attention from several
diverse fields of computer science. For instance, in the context of scheduling, it can be
used to represent scenarios where jobs require a fixed amount of time and resources,
which compose the two dimensions of a single rectangle. The task of packing many
such rectangles into an enclosing space, so as to minimize the width, height, or area of
this space, allows for the minimization of makespan, resources needed, or total wasted
resource. In VLSI design, rectangles represent actual physical modules that need to be
placed in a spatial arrangement such that no two modules overlap.

Previous work had cast rectangle packing as a constraint satisfaction problem (CSP).
In this formulation, a variable is created for each rectangle, whose legal values are the
positions that rectangle could occupy without exceeding the boundaries of the enclos-
ing space. In addition, there is a binary constraint between each pair of rectangles,
requiring that they do not overlap. We developed an alternatie approach, casting the
problem of optimally packing a set of rectangles with fixed orientations as a meta-CSP.
In this formulation, we create a meta-variable for each pair of rectangles, whose values
are the four pairwise relationships (i.e., above, below, left of, right of) that prevent that
pair from overlapping. As such, commitment to the exact placement of any rectangle
is not established until a consistent solution has been generated. By incorporating a

11



range of pruning techniques, including those mentioned earlier in this report, we ob-
tained results demonstrating that our approach performs competitively compared to the
previous state-of-the-art on a series of benchmarks. In addition, there is added flexibil-
ity in our approach that makes it much more amenable to extensions such as placement
of rectangles without fixed orientation and scale up to very large rectangles, which are
difficult for the fixed-placement formulation to handle efficiently.

We also tested our techniques in the real-world domain of circuit floorplanning
legalization [4]. Floorplanning algorithms have traditionally underperformed expe-
rienced designers, even when relatively simple interconnect metrics are concerned.
However, the sheer scale of modem systems on chip makes an all-manual design flow
infeasible. We developed a new efficient automated approach to the floorplan repair
problem, where a set of violated design constraints are satisfied by applying small
changes to an existing rough floorplan. Such a floorplan can be produced by a human
designer, by a scalable placement algorithm, or result from engineering adjustments to
a pre-existing floorplan. In all cases, overlapping modules must be separated, and in
some instances, modules may need to be repositioned to satisfy other requirements.

The algorithmic framework we developed uses the temporal constraint-satisfaction
methods described above, adapted directly to the spatial domain. While capable of
representing floorplans with or without overlapping modules, it can also support the
outline of the core area, fixed module locations, region constraints, proximity and
alignment constraints, etc. Instead of applying randomized local search in the hope
of satisfying these constraints, we track all implications of imposed constraints and
resolve violations by invoking gradual modifications to the floorplan. This approach
proved to be extremeley effective: it completely eliminates overlaps from layouts pro-
duced by existing systems that produce rough floorplans (e.g., Capo 9.4, Feng Shui 5.1
and APlace 2.0) on IBM-HB benchmarks with hard blocks, typically requiring negli-
gible runtime and increasing interconnect length by only several percent, significatly
outperforming competing legalizers. Furthermore, we are able to generate legal solu-
tions for these instances that surpass previously reported results in wirelength by an
average of roughly 7%.

8 Publications Supported by the Project
1. M. D. Moffitt, "On the Partial Observability of Temporal Uncertainty," Proceed-

ings of the 22nd National Conference on Artificial Intelligence, July 2007.

2. M. D. Moffitt and M. E. Pollack, "Generalizing Temporal Controllability," Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence,
Jan. 2007.

3. M. D. Moffitt and M. E. Pollack, "Temporal Preference Optimization as Weighted
Constraint Satisfaction," Proceedings of the 21st National Conference on Artifi-
cial Intelligence, July 2006.

4. M. D. Moffitt, A. N. Ng, I. L. Markov, and M. E. Pollack, "Constraint-Driven
Floorplan Repair," Proceedings of the 43rd Design Automation Conference, July
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2006.

5. M. D. Moffitt and M. E. Pollack, "Optimal Rectangle Packing: A Meta-CSP
Approach," Proceedings of the 16th International Conference on Al Planning
and Scheduling, June 2006. (Winner: Best Student Paper Award.)

6. M. D. Moffitt and M. E. Pollack, "Temporal Preference Optimization as Weighted
Constraint Satisfaction," ICAPS-06 Workshop on Preferences and Soft Con-
straints in Planning, June 2006 (Preliminary version of [3]).)

7. H. Sheini, B. Peintner, K. Sakallah, and M. E. Pollack, "On Solving Soft Tem-
poral Constraints using SAT Techniques," Proceedings of the 1 th International
Conference on Principles and Practice of Constraint Programming, Oct. 2005.

8. M. D. Moffitt and M. E. Pollack, "Applying Local Search to Disjunctive Tem-
poral Problems," 19th International Joint Conference on Artificial Intelligence,
Aug. 2005.

9. M. Liffiton, M. D. Moffitt, M. E. Pollack, and K. Sakallah, "Identifying Conflicts
in Overconstrained Temporal Problems," 19th International Joint Conference on
Artificial Intelligence, Aug. 2005.

10. B. Peintner, M. D. Moffit, and M. E. Pollack, "Solving Over-constrained DTPs
with Preferences," 15th International Conference on Automated Planning and
Scheduling, June 2005.

11. P. Schwartz and M. E. Pollack, "Two Approaches to Semi-Dynamic Disjunctive
Temporal Problems," ICAPS Workshop on Constraint Programming for Plan-
ning and Scheduling, June 2005.

12. M. D. Moffitt, B. Peintner, and M. E. Pollack, "Augmenting Disjunctive Tem-
poral Problems with Finite-Domain Constraints," 20th National Conference on
Artificial Intelligence (AAAI), July 2005.

13. M. E. Pollack and I. Tsamardinos, "Efficiently Dispatching Plans Encoded as
Simple Temporal Problems," in I. Vlahavas and D. Vrakas, editors, Intelligent
Techniques for Planning, Idea Group, Inc. Hershey, PA, 2005.

14. B. Peintner and M. E. Pollack, "Anytime, Complete Algorithm for Finding Util-
itarian Optimal Solutions to STPPs," 20th National Conference on Artificial In-
telligence (AAAI), July 2005.

15. M. D. Moffitt and M. E. Pollack, "Partial Constraint Satisfaction of Disjunc-
tive Temporal Problems," 18th International Florida Al Research Symposium
(FLAIRS), May 2005. 2nd Place Best Paper Award.

16. P. Schwartz and M. E. Pollack, "Planning with Disjunctive Temporal Constraints,"
ICAPS-04 Workshop on Integrating Planning into Scheduling, June, 2004.

17. B. Peintner and M. E. Pollack, "Low-Cost Addition of Preferences to DTPs and
TCSPs," 19th National Conference on Artificial Intelligence, July, 2004.
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9 Personnel Supported by the Project

This project provided support for the Principal Investigator, Dr. Martha Pollack, as
well as two graduate students: Michael Moffitt and Peter Schwartz. Moffitt completed
his Ph.D. degree during the period of performance (May 2007); Schwartz is scheduled
to defend his Ph.D. thesis in Aug. 2007. A third student, Jacob Balazer, was supported
for one semester early in the first year of the project.

10 Transitions, Interactions, and Honors

* Tutorial Presentation given by M. Pollack, "Temporal and Resource Reasoning
for Planning, Scheduling, and Execution", all day tutorial at the 21st National
Conference on Artificial Intelligence (AAAI), jointly with Dr. Nicola Muscet-
tola, Lockheed Martin, July 2006.

* Tutorial Presentation given by M. Pollack, "Temporal and Resource Reason-
ing for Planning, Scheduling, and Execution", all day tutorial at the 15th Inter-
national Conference on Al Planning and Scheduing, jointly with Dr. Nicola
Muscettola, NASA Ames, June 2005.

" Certain of the reasoning algorithms and software developed within this project
have been adopted for use in the DARPA PAL (Perceptive Agent that Learns)
program, a large, five year, multi-million dollar showcase project aimed at de-
veloping an enduring personalized cognitive assistant. Pollack has a subcontract
through SRI, International, one of the prime contractors on the PAL project, to
help incorporate several of the plan management technologies into the core of
the system being developed.

" Visit to AFRL by M. Pollack, Dec. 2004, to meet with Dr. Chet Maciag to
discuss cybersecurity and cyberdefense applications of the work, followed up
with email discussions with Mr. Chad Korose, Naval Reservist working with Dr.
Joseph Giordano.

" M. Pollack was elected to the CRA (Computing Research Association) Board of
Directors, 2007-2009.

" M. Moffitt won the IBM 2007 Josef Raviv Memorial Postdoctoral Fellowship.

" M. Moffitt won 1st Place in the ISPD (Internatinonal Symposium on Physical
Design) 2007 Global Routing Contest for his MaizeRouter algorithm.

" M. Pollack was appointed as a member of the National Science Foundation's
Computer and Information Science and Engineering (CISE) Advisory Commit-
tee, 2006-2008.

" M. Pollack gave the following invited talks. Note that while the topic of these
talks was on Assistive Technology, a number of the algorithms we used in our
assistive technology projects grew out of those developed in this AFOSR effort:
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"Intelligent Assistive Technology: The Present and the Future": Univer-
sity of Southern California Department of Computer Science Distinguished
Lecture Series, March 2007; Monterey Bay Aquarium Research Institute
Seminar, March 2007; 20th International Joint Conference on Artificial In-
telligence Invited Plenary Talk, January 2007; University of Massachusetts
Distinguished Lecture Series, November 2006.

"Intelligent Technology for Adaptive Aging": Plenary Talk at the 18th
International Florida AI Research Symposium, May 2005; Harvard Uni-
versity Computer Science Colloquium, April 2005; Columbia University
Computer Science Department 25th Anniversary Lecture Series, Feb. 2005;
University of Wisconsin Dept. of Biostatistics and Medical Informatics,
Feb. 2005; Invited Plenary Talk at the 19th International Conference on
Artificial Intelligence, July 2004.
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